The two vectors $\vec A$ and $\vec B$ that are parallel to each other are
$\vec A = 3\hat i + 6\hat j + 9\hat k$ $\vec B = \hat i + 2\hat j + 3\hat k$
$\vec A = 3\hat i - 6\hat j + 9\hat k$ $\vec B = \hat i + 2\hat j + 3\hat k$
$\vec A = 2\hat i + 6\hat j - 9\hat k$ $\vec B = \hat i + 2\hat j - 3\hat k$
$\vec A = 2\hat i + 3\hat j + 3\hat k$ $\vec B = \hat i - 2\hat j - 3\hat k$
If $\overrightarrow A \times \overrightarrow B=\overrightarrow B \times \overrightarrow A$ then the angle between $\overrightarrow A$ and $\overrightarrow B$ is
Let $\vec{A}=2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+j+2 \hat{k}$ then $|\vec{A} \times \vec{B}|$ is equal to ...................
The resultant of $\vec{A} \times 0$ will be equal to